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I: SUMMARY

The objective of this research was to investigate and develop a coupled
approach (analytical, numerical and experimental) to the ultrasonic
nondestructive evaluation of adhesive bond integrity. Results of these
studies were directed toward nondestructive evaluation (NDE) of the integ-
rity of adhesive bonds and bondlines for advanced composites and multi-
layered materials by the U.S. Army. Such studies are needed in both the
manufacturing phases of products in order to assure quality as well as
during the operating lifetime of the products in order to predict water
infiltration or bond deterioration and hence prevent failure.

The developed multiple-staged model started from a mathematical
description of the ultrasound propagation through an inhomogeneous,
isotropic or anisotropic solid with appropriate boundary conditions for the
transmitter/receiver unit coupled to the material under test. Analytical
solutions were employed to initially test and calibrate the numerical
fc-imulations. This numerical approach was configured to be flexible and
realistic enough to investigate a wide variety of bond configurations on the
computer.

Our strategy was targeted at the coupling of these numerical simula-
tions of the underlying physical processes with the experimental data
gathered in-house at MTL. The interaction of transducer signals with
different simulated bondline configurations such as disbonds, pure bonds,
and bonds of varying thickness were examined. The resulting synthetic
data was compared to experimental measurements. The correlations of the
experimental and nuniedcal trials were extended to include feature extrac-
lion capability related to inteifacial bond thickness. Therein, individual
characteristic features tepreseiting the bond thickness were numerically
isolated and overlayed with the experimentally observed signals. A- Fr

This novel multi-stage approach addressed the generation and propaga-! .. :, _
tion of elastic wave,, the wave interaction at the interface and advanced U, .,I
signal processing of experimental data. " -- - "

An executive summary addressing each component of the original a .. ..
proposal is followed by detailed chapters of each work item.

Avolliastljty Codeos

fti, D t ,eeoar-
• *1a1
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I: EXECUTIVE SUMMARY

PROJECT DESCRIPTION

A.) Background
The integrity of bonded structures is of paramount importance in the

safe and reliable operation of military equipment. The Patriot rocket
requires adhesive attachment of the ceramic-dome to the Kevlar ring.
Similarly, titanium components must be bonded to phenolic-based
materials. Helicopter rotor blades are multilayered composites bonded
together Cobra deck panels, nisle radomes, mines, projectiles, and
explosive cartridges arc. samples ot advanced military equipment requiring
adhe-ivc bonds and bondlines. The operational readiness and security of
these units depend to a large extent on the integrity of the interfacial bonds.

Nondestructive evaluation of the bonds and bondlines has experienced
veo limited success [1]. NDE methods are needed to determine the
siregth of the bonds in situ. Unfortunately, no NDE method has demon-
stmi.6d the ability to quantitatively stai. the strength of a bond. Several
NDE techniques have been applied to access adhesive bond quality. They
include ultrasonics, acoustic emissions, radiography, holography, nuclear
magnetic resonance, eddy current, and thermal imaging.[2] Of these ac-
cepted NDE methods only ultrasonics appears to retain a reasonable proba-
bility of success in the bondline application [3]. Thermal imaging requires
the 4omposite or radome shell to be of extremely small thickness Other-
wise, the thermal image of the interface is completely masked by the diffu-
siua, f heat through the substrate. Nuclear magnetic resonance has shown
strr . -iccess in th- detection .f water within bonds but it has not been
ablt! .-¢ detect disbo-ds, fo:eign matter or weak bonds. Ultrasonic pulse-
echv ecbniques have been shown to reliably detect total disbond regions.
Some investigators indicate that the strength of the adhesive layer can be
correlated to the attenuation coefficient and velocity of sound in the mate-
rial [4]. Interfacial and horizontally polarized shear wave measurements
have demonstrated the ability to discriminate bond strength [5]. However,
the test configurations were highly restrictive and the practical application
of the technique is undefined as yet. Leaky Lamb waves technique uses an
oblique incident wave. Usually the waves reflect off the interface, howev-
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er, certain frequencies excite plate waves in the structure. These leaky waves
have been shown to interfere with the expected reflection patterns [6]. Deter-
mining the correct frequency for destructive interference pattems is not reli-
able. Researchers have swept the frequencies to find a zone of interference.
If one examines multiple frequency responses of the same test configuration
smail subtleties of the bond integrity can be inferred. This ability to detect
weak bonds is still marginal. However, it does indicate that if one could cor-
relate the multiple values obtained from the complex input signals then the
probability of characterizing the system configuration would increase.

B.) Research Accomplishments
The basis of the research plan was the development of a multiple attack

strategy as shown in Figure 1. Building on our past experience into the analyt-
ical study of transient elastic waves radiating into an elastic half-space [8], a
precise model was developed which served as a calibration for our numerical
formulation. This numerical model solves the transient elastodynamic equa-
tion of motion subject to realistic boundary and initial conditions in two-di-
mensioail (x,y) space and in three-dimensional (axisymetric) space.

Depending on the employed probe, a longitudinal or shear wave contact
transducer have been simulated. The boundary and initial conditions can be
set over a wide range of practically relevant bounds. Furthermore, since the
model discretizes the general stress equation of motion, anisotropic and inho-
mogeneous material parameters can be taken into account. It is this feature of
mateial inhomogeneity that makes our numerical modeling approach particu-
larly suitable for bondline inspection. A realistic transducer response signal
was ircorporated into the numerical model and tested against the analytical
theory, the pi'opagatioi of the acoustic pulse was monitored throughout the
test slWinim'n. With the displacement field given at discrete instances in time
it was possible to "freeze" the acoustic pulse prior to reaching the bonded
area. The bond line itself can be studied in a broad fashion depending on geo-
metric, material, and density parameters. Figure 2 shows some of the bond
configurations tested using our numerical system and experimentally tested at
MTL. The simulated signals are currently being stored and compared with
practical measurements to train a neural net. The initial feature targeted for
extraction from the data is bond thickness which is the main focus in the sec-
ond phase of this project (MTL # DOD/U.S. Army - DAAL04-91-C-0054).
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~Adhesive

=e Mcroscopic
Disbond

Figure 2a - Double area discontinuity model - Uniformly
distributed microscopic disbonds resulting from surface

contamination - Taken from Thompson.

Uwforzrily Distrbuted Total Total Multiple Sized Arbitrary isbond
Disbonds Bond Adhesion Disbond Disbonds

'SuIbstrate-::-:-:-: usaeKSubstrate - Substrate .. usrt

Figure 2b - Captued displai;eient field in upper substrate

is applied to numerous brrndline configurations

The use of our numerical model has allowed us:

a) to gain crucial insight into the physical processes of ultrasound/
bondline interaction. This view of the interior region and the physics
of the system are evident in Figure 3. Note how the numerical model
shows the longitudinal, shear, Rayleigh, and head waves propagating
and reflecting within the material. This transparant window is un-
available in an experimental investigation.
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b) to generate synthetic data which can be correlated with practical
measurements in order to interprete field data of relevance to the U.S.
Army;

c) although not implemented completely in this phase I study, the nu-
merical model will allow us to optimize the NDE inspection process
by determing optimal transducer configurations, aperture sizes, fre-
quency settings, etc.

line of Symmetry

Figure 3:
U "rface plot for plMe Xgti with a 1/4 iw tnduer, fm 10 MHz t - 0.8 S

Our numeiical appreach was closely coupled with the in-house
,:xperimental investigations at MTL. The simulated transient outputs
(A-scans) were directly compared to the MTL measurements. The
result section of this report shows the excellent agreement between
the two investigation modes. Additionally, the numerical approach
aided in the development of new or modified signal processing meth-
ods such as the Chirp-Z approach currently under investigation at
MTL [121.
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C.) Work Statement of Research
WPI in conjunction with MTL explored the ultrasound bondline NDE integ-

rit- from all three accepted modes of scientific endeavor - i.e. experimental,
analytical, and numerical modes.

* Experimental Investigations
a.) MTL testing

The dominant focus was in experimental measurement of samples at
MTL. These bond samples underwent extensive analysis using longitudi-
nal and horizontally polarized shear waves. The Chirp-Z transformation
techniques were applied to enhance the obtained measurements. The
experimental output was saved in multiple formats. The unfiltered trans-
ducer signals (A-scans) as well as hardware Chirp-Z transformed outputs
were stored for all test configurations.

b.) Feature Analysis
The rationale for this procedure was that a specimen prepared with a

prescribed flaw or geometry exhibits a characteristic signal response as
given by such featwres as frequency content, maximum amplitude, rise
time, etc. 113]. We have tested experimentally and numerically multiple
layer specimens with variety of thicknesses. These signatures are inputs
to a neural net software system which is being trained to output discrete
thickness values of the interface. The training is ongoing with encourag-
ing results and is a dominant component of our phase II effort. The neural
net program was obtained by MTL.

* Mathematical Problem Formulation
Based on the proposed multiple attack strategy the analytical formula-

tions of the problem were thoroughly investigated as to their applicability
for realistically modeling th,-. physical process. Initial and boundary con-
ditions were examined relative to their influence on the underlying equa-
tions. Approximations to the governing equations were derived and inves-
tigated.

* Numerical Modeling
A finite element model of the elastic wave equation was implemented

on a mid-size computer (DecStation 5000 model 200). The code includes
pre- and post processing options such as adaptive mesh generation and

6



graphics routines. The user identifies the physical properties of the various
layers (density, wave velocities) and a desired resolution. The system auto-
matically discretizes a domain with individualized nodal resolutions in each
material. The successful two-dimensional modeling (x,y) was extended to
account for full three-dimensional geometries (axisymmetric).

Verification
The verification of our numerical investigations was two fold. Using

prescribed test configurations our simulations were compared to existing
analytical solutions yielding graphically indistinguishable results. Equally
important, numerical simulations were compared to experimental field tests
gathered at MTL. The result section shows that the numerical simulations
reproduced that observed experimentally with fidelity.

D.) Summa y
This work presents a concise overall approach to the analysis of bond-line

integrity as measured via ultrasound NDE. Based on the previously outlined
multiple attack strategy, a clear mathematical recipe was presented that de-
scribes the primary components of the coupled physical phenomenon of
ultrasonic waves impinging on an adhesive interface. It is expected that this
novel approach will increase the general comprehension of ultrasonic interfa-
cial interacion for nondestructive testing purposes. Moreover, the numerical
analysis approach was directly tested against analytical studies given certain
sinplifying constraints and against expeimental results gathered at MTL. In
each situation the simulated results predicted that observed in the analytical or
expwri.ental investigative mode with fidelity.
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2 ELASTODYNAMIC WAVE PROPAGATION

2.1 Governing Equations

The governing equation is the balance of linear momentum (Cauchy's first law of motion)

which in indicial notation can be expressed as

+ F (2.1)

where a, is the stress tensor, F is the body force vector, p is the density and u, is the

displacement vector. The Einstein summation convention is assumed where iJ=1,2,3

representing the three coordinate directions x, y and z respectively. ( represents a

spatial derivative with respect to the j direction.

In order to solve this equation for displacements it is necessary to express the stress

tensor in terms of displacements. A Kelvin model constitutive relation is chosen to allow

viscous damping.J15]

C' 4e1+ D~'d(2.2)

where C4W is the elastic constitutive matrix, DW is the damping constitutive matrix, 4ia

is the strain matrix and ik, is the rate of strain tensor A single dot above a variable

signifies a first derivative with respect to time, two dots a second derivative. Choosing

a Maxwell model, or a more complicated model for that matter, makes it difficult to solve

for the stress directly. It is assumed that the strains are small and that the material

behaves in a linear elastic manner. The strain-displacement and rate of stain-rate of

displacement relations are as follows

• nnm m n um nmmln l N ~ m
mm m



= .(u. .. ) = (., .(2.3)

Substituting equations (2.3) into (2.2) yields

, = + .u + Do, Id+ "1+), (2.4)

which can be written as

vV = C, uk + DW, (2.5)

by expanding equation (2.4) and swapping the dummy indices k and I in the second and

fourth terms. Substituting equation (2.5) into equation (2.1) yields

2U (2.6)
C Uk, + Dp. dk, + F, = p- (2

which is the elastodynamic wave equation expressed in terms of displacements. Note that

the wave equation is a set of three coupled second order hyperbolic partial differential

equations.

2.1 Wave Motion

The nature of the motion can be categorized into three types of waves; longitudinal, shear

and snrfP.ce. Longitudinal (or primary) waves are characterized by particle motion that

is parallel to the direction of propagation. Shear (also called transverse or secondary)

waves are characterized by motion that is perpendicular to the direction of propagation.

Surface waves have motion with components in each direction but whose magnitude

decreases exponentially away from the surface. Surface waves on a free surface are

known as Rayleigh waves. Waves at solid-solid boundaries are referred to as Stonely

waves.

10
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Head

Figure 2.1: Wavefronts generated by a point or line source.

Figure (2.1) shows the wave propagation for a point force on an infinite half-space. All

the waves propagate perpendicular to their wavefronts. The schematic only identifies

wavefront positions; it does not reflect the wave amplitudes which may be zero at some

points on the wavefront. The longitudinal wave travels with greatest speed which is

expressed as', -*' for an isotropic, linear, homogenous medium where. u and [A

are Lam's constants and p is the material density. The shear wave speed is defined as

CS . The Rayleigh wave has a velocity between 86.2 ard 95.5 percent of the C,
depending on Poisson's ratio. If the half-space is viewed from above, the Rayleigh wave

has A linear wavefront for plane strain and a circular wavefront for axisymmetric. The

head wave is a shear wave that is produced by the longitudinal wave at the free surface.

The mode conversion is necessary to satisfy the stress free boundary condition.[16]

11
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X,Z Longitudinal

Figure 2.2: Expected wavefronts for finite width transducer.

Figure (2.2) shows the expected wavefronts for a finite width transducer. The applied

force is spread uniformly over the transducer width. The discontinuity at the edge of the

applied force produces wavefronts similar to those generated by a point force. The width

of the transducer only contributes to the flat longitudinal wave.
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3 FINITE ELEMENT FORMULATION

3.1 Numerical Formulation

Finite element solution techniques for partial differential equations are most commonly

derived by variational principles or by the method of weighted residuals. Each method

attempts to satisfy the differential equation by approximating the solution with a set of

known functions multiplied by a set of arbitrary constants.

p
a E (3.1)

MNI

Whem NM are the known functions, of shape functions, and the unknown coefficients are

the displacements U,,. The capitalized subscript M refers to the number of discrete

points p used to approximate the solution [18].

The variational approach is based on minimizing a scalar functional derived from the

original differential equation. When solving equilibrium problems of elasticity this

functional represents the potenitial energy of the system. In the static case, the

miJdmizzation produces an extremum of the functional guaranteeing convergence of the

solutioni. Howevei, applying tht variational method to the elastodynamic wave equation

,pro''.',s only a sta&onmry value not an extremum of the functional [10], therefore

convc. ence is not guaranteed, which is to be expected considering the hyperbolic nature

of the. wave equation.

The weighted residual approach will be presented for its simpler mathematical nature, ie.

nowledge of variational calculus is not required. The method of weighted residuals deals

directly with the differential equations. Substituting the assumed solution for the exact
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solution into equation (2.6), the differential equation will usually not be satisfied over

the entire domain. The resulting error is known as the residual.

J= C~jUatNm + D.,/ 1 6NMj + F, PUmN V 0 (3.2)

The spatial derivative does not appear on the UM , 0. and Cf. terms because they are

spatial constants. This error is then forced to be zero on average over the domain by

setting the volume integral of the product of a set of weighting functions WL and the

residual A equal to zero.

f W[CU.N. + D..O.,N. + F, - p0.N]dV = 0 (3.3)
V

This formulation produces an independent equation for each degree of freedom. Although

the equations can be solved at this point, Green's theorem of integration by parts is used

on the first two terms of equation (3.3). This practice reduces the order of the derivative

on the assumed solution, allowing simple linear shape functions to be used, and also

expresses the boundary conditions explicitly.

-J WL COUNm I dV - f W L DULwNm4 dV
+ fS WLcVk, s + f5 WLD dk,,, dS (3.4)

+ f WLFdV - f WLPC!NdV = 0

Note that the exact solution has been reinserted into the surface integrals and that n, is

the unit outward normal on the surface. By combining the surface integrals and

substituting for the stress tensor using equation (2.2), it becomes obvious that they

represent the surface tractions at the boundary.

14



f5 WL(CVak' + Dth )nxds = f WLo~xjdS = fWTg (3.5)

where T, is the surface traction vector at the boundary. Equation (3.4) can be further

simplified by moving the constant U,, terms out of the integrals. According to the

Galerkin method of weighted residuals setting the weighting functions equal to the shape

functions yields

[fN mNA ] Out + [fNL (3.6)

+d I = fvNLFd + fNT, dS

Equation (3.6) is applicable to the entire domain. The equation is effectively discretized

into finite elements by the appropriate choice of shape functions NL.

3.2 Plain Strain and Axisymmetric Formulation

In order to avoid the complexities of a full three dimensional formulation, the simpler

two dimensional plain stain and axisymmetic models are formulated. Advantages

include reduced total degrie of freedom models, simpler mesh generation, and ease of

graphical presentation of ri-sults, The computational strategies developed in section 5 are

not limited in any way to a two dimensional formulation and can be easily extended to

a full three dimensional formulation.

The plain strain formulation models an object infinitely thick in the z coordinate direction.

This eliminates normal strains in the z direction as well as shear strains in the x-z and y-z

directions. The transducer is now modeled as an infinite strip and any voids become

infinite tubes. The waves generated are cylindrical about the z axis. As the cylindrical

waves expand the amplitude of the wave decreases because its energy is spread over a
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larger area. This phenomenon is referred to as geometric dispersion. The actual

geometric dispersion for a circular transducer is spherical and as a result A-scans from

this formulation do not compare well with experimental data quantitatively.

The axisymmetric formulation models a body of revolution under axisymmetric loading

conditions. This formulation models the physical transducer extremely well because the

geometric dispersion is spherical. The formulation does not work well for voids that are

off of the centerline which are modeled as circular rings. If the emphasis of the analysis

is on the wave interaction between layered mediums the axisymmetric formulation is the

most practical.

The fourth order tensors of equation (3.6) are difficult to deal with and can be reduced

to second order tensors by index contraction [19]. For the plain strain case the C,, andD~u

matrices become

CV 0 $= C1 122 C2 22 C22 2  Dpi L = -d 1122 d=n dM2 2  (3.7)

.C1112 C2212 C 12 .2  d1112 4=2 d 122

An axis of symmetry may be chosen in an x' or y' direction if the stiffness and damping

matrices transform such that c,', -= = 0 and d;2 = d ,1 = 0. The shape

luaction matrix is defimed as

NL0= N1 0 N2 
0 ... NL 0 ] (3.8)

ON, 2  .0N

The derivatives of the shape functions become

assuming that the displacements have been contracted according to

16



- 0 0 ... -NL o
ON1  ON2  (3.9)

NL=0 0 -* 039

aN, ON, ON aN2  aNL cnL
oy ay & &

. U [U, U21l U U, ... UU, (3.10)

where the first subscript is the direction and the second is the node number.

Equation (3.6) can now be cast in the more familiar form

[M] + [D]U + [K]U = F4 + Fs (3.11)

with the following definitions.

[M] = fNpN.,dy F. =- fNFdxdy
A A

[D = f&N,.?,,, dxdy Fv = f N, dS (3.12)
A I£ .[K]j = fNI NCjjm.1 ,dZ,,
A

where [M] is the mass matrix, [D] is the damping matrix, [K] is the stiffness matrix,

Fh are the nodal body forces and F, are the nodal surface forces. The volume integrals

have bee;, reduced to area integrals due to die two dimensional formulation in which a

unit depth in the z direction has been assumed.

For the axisymmetric formulation, NL is the same and Cw, D,, and Nt take the

following forms.

17



c1111 c12 2Cm 0 dil, d1w d1, 0

c1 , c= c2 3  0 d1 W d,,,n d 0 (3.13)

VE, CC3 C C 0 3 0

0 0 0 cum 0 0 0 du

N - - 0 ... o0

n, _0
az & &

o N 2  0 N
Or 87 a. (3.14)

, _. "N""  0 ""  
0

r r r

[NI ON1  aN2 aN2  aNL NL
Or & r& & O&&I

In order for ai axiymmetric formulation t be valid, the material must be at least

transversely isotroric with the material axis of symmetry parallel to the z axis [1I]. The

expressions preseated for the [C] and [f] matrices have been appropriately reduced.

Equation (3.11) is now defined by

(MJ = f 2 xrNLpNm,r Fb f 2 rNFdrdz
A A

[D] = f2,trND N,,bdz F 2 n2rNLTjdS (3.15)

(K] =f 2 -nrNLC ,,&dz
A L$ W .

A

The integrations in equations (3.;2) and (3.15) can be calculated numerically using Gauss

quadrature. The shape functions NL for common element types and the procedure for

Gauss quadrature can be found in many textbooks [20,21;.
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3.3 Time Integration

Equation (3.11) represents a system of linear second order differential equations in time.

Numerical solution schemes are based on discretizing time into intervals and satisfying

the system only at those time slices. Various schemes include the central difference

method, the Newmark method, the Houbolt method and the Wilson-O method. The

difference between these schemes is determined by how they estimate the displacements,

velocities and accelerations within each time step [22]. Although these methods are

commonly referred to as finite difference methods in time, Zienkiewicz has shown that

they are equivalent to a finite element formulation using the weighted residual method

applied to an interval 2At if the shape functions are chosen appropriately [23].

These methods fall into two groups, implicit and explicit. Explicit implies that the

solution at time t + At depeids only on known values at previous time steps. Implicit

implies that the solution at time t + At depends on known values at previous time steps

as well as values at the current time step. The main advantage of the explicit methods

is that the system of equations is decoupled. The disadvantage is that small time steps

are required for stability. Implicit schemes are stable for larger time steps but require a

matrix to be either inverted or triangularized at the first time step. Due to the large size

of the matrices involved, the explicit central difference method is employed.

Using the central difference method the acceleration term is estimated as

Ir _ [U r At - 2Ut + U r- At] (3.16)
(At) 2

assuming that At remains fixed. The velocity term was estimated using a backward

difference to avoid a matrix inversion and maintain an explicit solution [23]

- I [Ut - Ut-At] (3.17)

At
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Substituting for 0' and t' using equations (3.16) and (3.17) into equation (3.11) and

solving for U' Al, yields the following fully explicit equation neglecting body forces.

Ug'A t = At[M-{ (At(F:' - [K]U') + [D](Ul A - U')} + 2U t - U t- A  (3.18)

3.4 Mass Matrix Diagonalization

The mass matrix resulting from the integration defined in (3.12) and (3.15) is called the

consistent mass matrix. It can be evaluated using Gauss quadrature numerical integration.

However, to maintain an explicit solution the mass matrix is diagonalized. The mass

matrix can be diagonalized without a significant loss of accuracy by using the following

formula on an elemental basis [24].

d MAIC P P

M; - M EEM; (3.19)

i-I

where the superscripts d and c stand for diagonal and consistent matrices respectively.

Aternatively the diagonalized mass matrix can be evaluated directly by moving the Gauss

qunuJratift points to the nodc points. This approach works well with the plane strain

ft rindJat.)n but fails for the axisymmetric case when the element is on the centerline

(r = 0). After diagonalization, the matrix inversion is reduced to inverting each diagonal

component individually. If a central difference formula is used to estimate the velocity,

solving for U" ", would require the sum of [M] and [D], which would no longer be

diagonal, to be inverted. The [D] matrix can not be diagonalized because the sum of the

components will always equal zero.
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3.5 Stability Constraints

The disadvantage of the explicit method is that it is only conditionally stable. The

constraint governing the stability is known as the Courant constraint.
At

Courant = q = C. At 1.0 (3.20)

Where C. is the longitudinal wave velocity C, of the material of that element and

Ax.., is the length of the shortest edge for a rectangular four noded element. For a three

node4 triangular elenent or a four noded parallelogram, Ax.., will be the shortest

distance from any node to a non-adjacent side. Every element must satisfy equation

(3.20) for the solution to be stable. In the explicit method information flows across one

element per time step. Therefore the minimum rate at which information flows is the

rnirdnium Ax divided by the tine step At. If thai rate is slower than C. the numerical

solution can not approximate the actual wave motion and the solution will diverge, which

is the constraint of equation (3.20). [26]

3.6 Initial Conditions

The initial conditions needed to start equation (3.18) are the full displacement vectors at

t- -At and = 0 The first displacements calculatoe-d are for t = At. Alternatively, if the

iccelern-ion, velocity and displacemet veciors are known at t = 0 a Taylor series

axpainsion can be used to approximate the displacement at t = At.

UAt = U ° + AtOo + A(At:0 0  (3.21)
2

If only the initial velocity and displacement vectors are known a backwards Taylor series
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expansion can be. used to find the displacements at t = -At as follows [11].

U- = 1O - AtV-A' (3.22)

Equation (3.18) can then be used at subsequent time steps. Although non-zero initial

conditions are acceptable, it is assumed that the medium is initially at rest with no

internal stresses. The initial conditions then become U'a' = 0 and 130 = 0. If a forcing

function is applied that is zero at t = 0 the solution of equation (3.18) at t = At will not

produce any displacements and can be avoided by substituting F" 10 for Ft in equation

(3.18) and increasing the total time at each time step by At and setting the response att = At

equal to zero.
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4 COMPUTATIONAL CONSIDERATIONS

Upon first inspection, it would seem that implementing the finite element solution could

be done in a similar manner to the simple static case. However, it becomes apparent

quickly that there are seeral problems The extremely short wavelengths of the

ultrasonic waves force the finite element mesh to become extremely dense. Due to the

large number of degrees of freedum of the dense mesh, the memory required to store the

matrices is excessive. The difficulty is compounded by the requirement of a time step

size that is proportional to the element spacing through the Courant constraint. The

num1 er of time steps necessary to complete an analysis quickly grows into the thousands.

Corsequontly executio, times cwt easily stretch into months. This section presents a

computer implementation strategy that avoids these pitfalls, creating a useful tool for the

investigation of ultrasonic phenomena.

4.1 Memory Storage

Fo large inesheb the memory rcqudred to store !he stiffness and damping matrices quickly

becomes prohibiti,,e because thei size is of the order of the number of degrees of

-., squared. Foi cx.d&'ple, i tht iresh has 1,000,000 degrees of freedom, the full

st;-c"ess mau-, wil netrr 4,004 gigabytes of memory using single precision. For a

banded matrix solver, assuming a 500 by 1000 node mesh, the memory reduces to 8

gigabytes. However using a sparse matrix solver only requires the storage of the non-

zeio values, reducing the memory to 72 megabytes for the stiffness matrix. The damping

matrix is of eqL-al size increasing the total to 144 megabytes. Although this amount could

be handled, it requires the cpu to swap memory back and forth from secondary storage
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which is extremely inefficient and time consuming. An alternative method for storing

those matrices is pursued.

One of the advantages of using the explicit formulation is that the global matrices are not

assembled. Bathe ad Wilson [22] suggest that the displacements can be computed using

an element by element approach. Displacements are multiplied by the elemental matrices

and the contributions are assembled in the new displacement vector. Further savings can

be achieved if only the unique elemental matrices are saved. Although the element by

elerent strategy reduces the memory required to the absolute minimum it creates

redundant operations. Asstming a rectangular linear mesh, each node will be visited by

four elements. There are eight multiplications for each degree of freedom per element

visit or 64 total multiplications per node. The assembied matrix multiplication is

completed by eighteen multiplications per degree of freeJom resulting in a total of 36

multiplications pei node For uniformly rr lintax triangular elements, there are 72

multiplications for the eleenzat 5y element approach and only 28 for the assembled

matrix. For a 3-dimensional, 8 noded brick formulaticn there are 576 -iultiplications for

the element by eiement and 243 for the assembled ratrix.

--i m.1  1 1 1 I 1

. e • -4.m o4ds

Figure 4.1: pl.ane strain unique node and Figure 4.2: Axisymmetric unique node
element loc2aons. and element locations.

This redundancy can be eliminated by identifying and storing unique rows of the

assembled matrices. A node by node approach can then be utilized to reduce the number
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uf operations to the minimum. A unique node location is determined by the properties

of the surrounding elements and by their relative positions. For simple layered

geometries, with homogeneous material properties within each layer, an a priori method

of determining the unique nodal locations is shown in Figures (4.1) and (4.2) for the plain

strain and axisymmetric configurations, respectively. The number of unique nodes for the

layered model can be calculated using the following formulas.

Number of unque nodes = 6(NL) + 3 (Plane Strain) (4.1)

Number of uique nodes = 2(NL + 1)(NR) (Axymmetric)

Where NL is the number of layers .nd NR is the number of nodes in the r direction. The

plane strain formula is independent of the number of nodes in the x or y directions. The

axisymmetric formula is independent of the number of nodes in the z direction but

dependent on the number of nodes in the r direction The memory required to store the

stiffiaess and danping inaarices for a 500 by 1000 node, thde layered model is reduced

arom 144 Mbytes to 12 kbyxes for plane strain and 2.3 Mbytes for axisymmetric. Each

unique node is given an integer flag to associate it with its unique row. The remaining

non-unque nodes axe assiptned the flag number for the appropriate conesponding unique

node The mass matrix can be stored in the same fashion because the unique nodes in

Figures (4. 1) and (4 2) are also unique mass nodes.

TIe local stiffness matrices are only calcuhater, :, the unique element locations shown in

Figures (4.1) and (4.2). The unique clenents are flagged in a similar manner as the

anique nodes. Row assemblage is acconQlished by visiting each unique node, calculating

the unique element flags for Lhe four surroundii-g elements and assembling the appropriate

values from the local stiffness matrices into the unique rows, or.e for each degree of

freedom. The process is exactly the same as in conventional finite element methods

except that onl: two rows of the ass:mbled matrix are saved.

The node by node form of equaticn (3.18) can be written as follows.
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U;1?r- A t [M ~A t (F,- [], ' + [D],,(m . + ') 2 U~ - UL;A (4.2)

The bar over the displacements indicates a vector quantity and [ indicates the

appropriate row of the matrix. [] indicates only the diagonal component of the

appropriate row, maklng [Mft. a scalar quantity.

4.2 Solver Efficiency

The bulk of the time used by the solver can be attributed to two processes. The first is

the actual solution to the differential equation The second is the determination of the

element connec ivity necessary to place local node contributions in the correct global

locations. To develop the most efficient solver possible both of these processes are

stretalined.

Equation Reduction

The first step in minimization of the actual solution factors equation (4.2) for the

displacements. The resulting coe.icients are constant and are premultiplied to avoid

repeating the same multiplications every time step. The factored equation becomes

t-At II "/ t-At (43)•' Fs + [Klm' + 4,3)

with the following definitions.

F1 = At2 IM]Z iF:

[I', - -A: 2[M1ri,[KJ,,w- At[M]14,,[D] AM + 2[ (4.4)

[K].'. = At [M ],[D],, -MMW

where [1] is the identity matrix. If damping is not included, equation (4.3) becomes
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Uu Fs + MMA. Ut - LM(4.5)

with the following definitions.

Fs' [M12,WFOt  (4.6)

1= -At 2[ML~K, +
JKrO" [M;=j[] + 2[tjmw

Note that the U'-L' term is no longer a vector quantity in equation (4.5).

Automatic Connectivity

The time expended on the element connectivity can be minimized if the mesh is restricted

so that the connectivity is determined algebraically. The restriction simply requires the

connectivity to be equivalkrt te a ;ctangular grid with regular node numbering. It is

important to note Oiat the nodal ,;oordinates are not iestricted as long as gaps or overlaps

are not created. Voids can be modeled by giving a rectangular section of elements zero

local stiffness matrices and skipping th. displacement solution at nodes that lie completely

within that area. The connectivity is then calculated using the row and column of the

element However, if the node numbers are determined solely by the row and column

numbers the node numbers themselves do not produce any new information. le impetus

for global node numherin is to represent the assembled matrices as two dimensional

arrays that can be inverted using stock solvers. Since the matrices are not inverted, nodes

ca, b labeled using the rmw a,,d colamn numbers by increasing the dimrensionality of the

arrays

U *U(k,ij) (4.7)

Where k is the displacement direction (1 = x,z, 2 y,r), i is the row number and j is the

column number. This eliminates the operations necessary to convert to global node
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numbers. The connectivity is then easily calculated as the following.

U*.,= [ U(k,-1.j-1) , ,U(ki-1,j) U(kj-1J+)

U(kjj-1), U(kJi) , U(k,i,+1) , (4.8)

U(kJi+lJ-1) , U(k,i+l,/]) , U(k.1+1,j+l) ]

Where each term is repeated twice, first for k - I and second for k = 2 (see equation

(3.10)). The elements are also numbered using row and column numbers when the unique

stiffness and damping rows are determined before the first time step. After that the

element numbers are no longer needed using the node by node solution.

Row-Column Multiplication

To facilitate the row-column multiplications in equation (4.3). the unique rows are

separated into two (x3) arays. One taray are for the values that bre muliplied by

displacements in the x,z direction and the second are for the values multiplied by the

dispkcements in the yr direction. Equation (4.3) becomes

At I I - f I r , tAt r [in I t-At (4.9)
= F + [/QJro UU" + [',, 2 + +,.1 + "',.2"2

The primed stiffness rows in equation (4.9) are stored as [iw., = UNK(k,,mn) and

fk1m,, = UND(k,1,mn) where kirficatei the displacerent direction, Landm arethe(3x3)

naray indices and n is the unique row number. The (3x3) arrays are arranged to

wivzrespnad to the node connectivity vhich is alsu def'ned by a (33) array (equation

(4.8)). The row-column multiplication can then be accomplished by multiplying values

in the same array positions and adding the result

Boundary Conditions
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Dirichlet type boundary conditions can be applied simply by setting the nodal

displacement at time t + At equal to the specified displacement. This can be done after

the solution at the node is calculated or if it is more efficient the solution at the node can

be sidpped. If the Dirichlet boundary conditions are not functions of time, the

displacement vectors can be initialized with the prescribed values and the solver can

ignox those nodes. The boundary conditions are then implicitly applied at every time

step. For the layered medium model, Dirichlet boundary conditions are applied only at

the nodes along the axis of symmetry which are restricted from moving in the yr

direcion.

F

*11

i -- y,r

XZ

Figure 4.3: Boundary conditions for half symmetry model.

Neiiiann iype boundary conditions can be. applied at the specified nodes by including the

F. te r in equatior (4.3). 'The force term appears only at the. nodes on the top surface

:;dnr the Lansducer. This reduces the ar-,urt of menory required to store the F, array

ano eliminates unnecessary computations The remaining regions are traction free

boundaries, see Figure (4.3) It is interesting to point out that free body motion is not

restricted in the x,z direction. This does not cause a problem because the stiffness matrix

is not inverted. If the forcing function has a non-zero net force, the mesh will eventually

gain a net velocity in the same direction. The displacements will then continue to grow
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in time. If the forcing function has a zero net force the displacements will remain

centered about the initial mesh location.

Solution Regions

As the solver moves from node to node it needs to recognize whether the node is on an

edge, on a comer or in the interior. It also needs to know if boundary conditions are

being applied at that node. As the solver visits each node it determines the unique flag,

performs the row-column multiplications and completes equation (4.3) or (4.5) by adding

the remaining scalar quantities. To accomplish this as efficiently as possible, the nodes

are divided into regions where the solution is performed separately. After a number of

iterations the solver changes to a different sectional configuration.

The initi9 solver has five sections as shown in Figure (4.4). Section 1 contains only the

corner node on the top surface on the axis of symmetry. Section 2 contains the nodes on

the top surface under the transducer. Section 3 contains the nodes on the top surface not

under ihe transducer. Section 4 contains the node on the axis of symmetry. Section 5
contains the interior nodes, right boundary nodes and the bottom surface nodes. The

Neumann type boundary conditions are applied in sections 1 and 2. The Dirichlet

boundary conditions are applied in section 4. The row-column multiplications are reduced

in sections I through 4 because the connectivity is lowered from 9 to 6 for the edge

sections and from 9 to 4 for the comer node.
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transducer I f 2 3

secondary

solver also

has five

sections

(Figure 4.5).

Section 1 Figure 4.4: Initial solver solution regions.

contains the

nodes on the top surface excluding the comer nodes. Section 2 contains the nodes along

the axis of symmetry. Section three contains all of the interior nodes. Sections 4 and 5

contain the right hand side boundary nodes and the bottom surface nodes respectively.

Similarly row-column multiplications are reduced in sections 1,2,4 and 5.

---- y,r

XZ

Figure 4.5: Secondary solver solution regions.

When computing the solution in section 5 of the first solver and in section 3 of the

second solver, the order in which the solver proceeds from node to node greatly affects

the execution time for the axisymmetric formulation. The sweep should be carried out

by starting at the upper left-hand node and moving down the column and then advancing
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one column to the right. This swe-p pattern is more efficient because the unique node

number does riot change in a single layc- as the solution proceeds down the column. This

is faster because the pointer to the stiffness and damping arrays is not recalculated for

each node. If a horizontal sweep is used cpu time is increased by 30 percent.

Expanding Solution Domain

At each time step information travels across one element. For the nodes that have not

been reached yet, the solution of equation (4.3) consists of 72 zero multiplications and

72 zeLO additions because the displacement vectors will contain all zero entries.

Obvioasly no new informarion is gained by carrying out the solution at those nodes.

Therefore the solution will be extremely inefficient at early time steps when a majority

of the nodes fall into this group.

6xpiidin? the solution domai, tt ie same rate as the flow of information eliminates the

unnec .ssry calculations. The iitial domain consists of the nodes under the transducer

(section 1 and 2 in the initial solver) and expands by one row and one column with each

time Eep until it reaches the boundary Figure (4.6) shows an example of how the

solution domain advances.
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i 0 1; Figure 4.6: Example of expanding solution domain procedure.

donain is most pronounced when the total thne of the analysis is short. As the number

of iterations beyond the time when the solution covers the entire domain increases, the

,ealized time savings become a -mkller percentage of the total execution time. It is

exuaki y helpful when debuggiug changes to the program because of the quick initial

resp- nse.

Solve, Switching

Tht switch from the first solver to the second solver is determined by either the number

of ;terations neressary to complete the solution dom ;n expansion or the number of

:tt;rat;:.,n5 over which the forcing function F, is applied. The greatej of die two

, fl:. t), iteration al whi,.h ie !;witch is made. If the expansion is the determining

-. ,1. 'he forcing function wil' be set to Lero after it is complete if the opposite is true,

db .pansion will stop whet the outer boundaries have be.n reached. The solver will

not distinguish between the interior nodes and outer nodes when sections 3, 4 aid 5 reach

the edge of the domain and will assume a connectivity of six, six and nine respectively.

The displacement vectors are dimensioned to include one extra row and one extra column

of 'imaginary' nodes on the right-hand and bottom sides. The solution is unaffected
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because the corresponding stiffness matrix components will be zero and solutions are

never calculated at those nodes.

Displacement Vector Rotation

The solution of equation (4.3) requires three separate displacement vectors to be stored

simultaneously, namely UO - V'-at , UI- "V and V2 =' -A'. As the time step

advances the P 51 vector becomes P and P becomes U . Therefore at the end of

every time step UO must be set equal to UI and then UI must be set equal to 1/2. The

solution is then repeated solving for the new U2. In order to avoid this operation, the

solver is repeated three times in succession. In the first section UO = r-A , UI .- Jt and

U2 =-U At . In the second section UO =-*', U1=i'- and U2 --W. The third

section completes the cycle with UO =-U', UI =- Ur and U2 = Ut-Ar. This process

shifts the displacer" - ,xtors back irmlicitly.

If damping L neglected and equation (4.5) is used, only two displacement vectors need

to be stored. The V t'*A displacement vector can be calculated directly into the '-A'

because of the one to one correspondence in equation (4.5). In this case the solver is

only split into two sections. In the first section UI = Vt and UO = IAt to start with UO

becoming Ut*Ar as the solution proceeds from node to node. The second section has

UO -U and U) = U 'atA with U) becoming Ir'At to complete the cycle. For simple

models where the number of unique nodes is small, the displacement vectors become the

limiting memory requirement. For the 500 by 1000 node model, each displacement

vector takes 4 Mbytes of memory. By rolling Vr*At into r-A' the total memory required

is reduced by nearly 33 percent.
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5 FINITE ELEMENT CODE VERIFICATION

5.1 Convergence

Several factors influence solution convergence. The stability of the time integration, as

discussed previously in section 4.3, requires the Courant number to be less than or equal

to one. However, the solution will not converge for q - 1.0. The numerical integration

of the stiffness matrices, time integration methods, computer round-off errors and

dispersive effects are possible causes of solution divergence. The inability of the model

to represent the forcing function either in time or space will not affect solution

convergence. The solution will, however, not produce the correct displacements. The
mass matrices are not a source of error because they are exactly integrated by a four

point Gauss quadrature.

Stiffness Matrix Numerical Integration

The numerical integration of the stiffness matrix for the plane strain case is exact for 4

point quadrature. Increasing the order of integration will not increase the accuracy of

the solution. Single point integration is not acceptable because it allows certain

combinations of displacements to exist in the absence of nodal forces. The axisymmetric

formulation of the stiffness matrix involves a r-1 term which can not be exactly

integrated using Gauss quadrature. However, for the axisymmetric case increasing the

order of numerical integration to 9 and 16 point quadratures had no appreciable effect

on solution convergence or wave velocity. One reason for this is that the wave

propagations investigated were all axial in nature. The axial waves are driven by the

terms in the stiffness matrix that do not contain the r-1 term and are integrated exactly

by the 4 point quadrature. For a complete study, radial wave propagation properties

must be investigated.
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Time Integration

The central difference approximation of equation (3.16) does not produce any instabilities

as long as the Courant constraint is satisfied. The backwards difference approximation

in equation (3.17), however, does introduce an instability proportional to the magnitude

of the components of the damping matrix. The addition of viscous damping usually

increases the stability of a numerical solution by damping out spurious modes. With the

backward difference formula the velocity at time t is estimated as the velocity att- &
2

which can cause the viscous force to be larger than the sum of the other forces acting on

the node causing the solution to diverge [25]. Decreasing the Courant constraint will

decrease the time step and reduce the effect of the error of the backward difference

approximation. If the velocity was approximated with a central difference formula the

viscous damping would indeed increase the stability of the solution.

Computer Round-off Error

The code was written in both single precision (8 digits) and double precision (16 digits).

The solution convergence was not affected by the increase in accuracy of the double

precision representation. Divergent solutions showed exactly the same A-scan for single

precision as for double precision. Double precision is only necessary to retain accuracy

during matrix inversions. Because there are no matrix inversions in the formulation

single precision accuracy is acceptable. However, because single precision is more

sensitive to underflow conditions, i.e. when numbers become smaller than can be

represented by the computer, equations (4.3) and (4.5) must be modified. Factoring out

the A2 term from (1' and [K]" will uvinimize the number of underflow checks.

The main advantage of using single precision is a 25 percent increase in processing

speed.
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Spatial and Temporal Discretization

The degree of spatial and temporal discretization is determined by the frequency of the

forcing function. For sinusoidal input, the degree of spatial discretization is defined by

the number of nodes per wavelength, n, - -L. The degrn of temporal discretization

is defined by the number of time steps per period, n, -- The degrees of
At

discretization are not independent due to the Courant stability constraint. Substituting

n. and n, into equation (3.20) yields the following relation

nz m qn, (5.1)

which guarantees that the temporal discretization will always be greater than the spatial

discretization. The forcing function is a raised cosine function given by

F, = [1 - cos( W)]cos() (t- 15.2)
3

which has a Gaussian frequency distribution centered at w, see Figure (5.1). Figures

(5.2-4) compare displacement results for three different values of n. for the initial wave,

the first reflection and the second reflection, respectively. Note how the eror for

n. - 4 does not increase as it propagates. Depending on the degree of accuracy

required, an n, in the range of 6 to 10 is suggested. The numerical model used is

explained in the next section.

5.2 Dispersion

Dispersion is the variation of wave velocity with frequency. If the forcing function has

a broad band frequency content, dispersion will cause the wave to change shape as it

propagates. An isotropic, homogeneous, lossless material is non-dispersive. Numerical

solutions will often introduce an artificial dispersion creating an error in the solution.
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Figure 5.1: Raised cosine forcing function
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The numerical solution of equation (2.1) employs both spatial and temporal

discretizations. Each of the approximations causes dispersion. As shown by Krieg and

Key [27] and Belytschko and Mullen [28,29], choosing the appropriate combination of

mass matrix and time integration can minimize the artificial dispersion. The combination

of lumped mass matrix and central difference time integration for q - 1.0 is a completely

nondispersive solution along element edges. The lumped mass matrix decreases the

phase velocity as frequency increases and the central difference integration increases the

phase velocity as frequency increases. As q is reduced the dispersive effect of the central

difference integration is reduced which shifts the net dispersive curve towards the lumped

mass dispersive curve. Because the dispersion is dependent on the element size through

the Courant constraint, a mesh with nonuniform elements in the same material will have

nonuniform dispersive properties. For models containing more than one material, the

spatial discretization n. must be the same in each material for uniform dispersive

pro es.

Although a completely nondispersive solution is desirable, it is not possible because the

solution diverges if extremely high frequencies are not attenuated. In fact, for the

undamped case, solution convergence is completely determined by the combination of the

highest unattenuated frequencies and the lowest natural frequency at a node.

A special model is created to reveal the effect of dispersion on the solution. Starting

with the same model as shown in Figure (4.3) the boundary conditions on the right-hand

side are changed to model another axis of symmetry, see Figure (5.5). The forcing

function is applied to the entire top surface with a uniform distribution. The raised

cosine signal imparts a zero net force on the model and approximates the actual wave

pulse generated by a piezoelectric transducer [30]. The model then becomes one

dimensional, which eliminates any geometric dispersion. Figures (5.6-8) show how the

artificial dispersion affects the wave shape as it bounces back and forth. When q is close

to 1.0 the solution is nearly non-dispersive as predicted [29]; as the q is lowered the

dispersive effect is increased. With decreasing q, the solution converges to the dispersive
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effect caused purely by the mass lumping.

5.3 Qualitative Results

The wavefronts produced by the finite element code are compared with Figure (2.1) and

(2.2) qualitatively by plotting the displacement fields for a point source and a one quarter

inch transducer at a given time step. Surface plots are used to display a single

displacement component. Although the wavefronts can be clearly identified, the plots

do not represent the actual wavefront shapes which contain only in-plane displacements.

A 7.0 by 7.0 mm mesh with Aluminum material properties is used and displacements are

stored at 1.2 jus for the point source and at 0.8 ;s for the transducer.

Line and Point Source

Figures (5.9) and (5.10) show the point force displacement results for the plane strain

and axisymmetric codes, respectively. The wavefronts agree with those predicted in

Figure (2.1). The longitudinal, shear, head and Rayleigh waves can all be identified.

The longitudinal wave does not fully appear in either plot. The x,z displacements are

zero in the y,r direction and the y,r displacements are zero in the x,y direction as

expected, which confirms that the displacement direction is parallel to the direction of

wave propagation. There is a small bias in amplitude to the x,z direction which is

justified because that is the direction of the applied load. The slope of the shear wave

in the y,r direction is not zero at the axis of symmetry. This does not create a

discontinuity because in the mirror image the y,r displacements must be reversed in sign

to maintain a symmetric response. There is no sign reversal for the x,z displacements.

The Rayleigh wave will also have a similar sign reversal for its y,r displacements. The

Rayleigh wave has the largest amplitude and does appear to decrease exponentially away

from the surface. The x,z and r,y displacements for the Rayleigh wave are out of phase

by 90 degrees which agrees with the expected ellipsoidal motion. The large Rayleigh

wave obstructs the view of the head wave that originates where the longitudinal wave
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Fige.9a: U daeplot fora in wu f 5 MHZ t 1.2 ps

Figu 5.9b: U, m*pofo a~, f5 su MHZ t .1.2 p
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Figuze5.1I&U, surfamplot for apoint source, f 5 MHz -2

Figur5.1lob: Usurfaccpot for poitsourVc f - S MHz t -li~
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grazes the top surface and connects tangentially to the shear wave. The axisymmetric

wave amplitudes decrease faster than the plane strain wave amplitudes as the waves

move away from the center because of the difference in geometric dispersion.

Transducer

Figures (5.11) and (5.12) show the

displacement plots for the one quarter Point Transducer

inch transducer. Again the wavefronts _ HTIIT
agree well with those predicted in Figure

(2.2). Most of the energy from the

center of the transducer goes directly into

the flat longitudinal wave giving it the

greatest amplitude. The other waves are Figure 3.13: Point source and edge effect

smaller because they are generated only shear wave propagation.

from the discontinuity at the edge of the

transducer. The waves caused by the discontinuity are similar but not identical to those

caused by a point force. The shear and Rayleigh waves are now inverted in the x,z

displacements and have the same sign in the y,r displacements. Figure (5.13) shows

more clearly how the step discontinuity differs from the point source. Again, waves

moving away from the center are attenuated faster in the axisymmetric case because of

the difference in geometric dispersion. Waves that are travelling towards the center for

the axisymmetric case will actually gain amplitude as the spherical wavefront collapses.

5.4 Analytic Results Comparison

Analytic solutions for a line source and a point source at points within the domain are

plotted against the numerical solutions as a means of validating the finite element code.

The analytic solutions presented here were calculated with the Cagnaird de-Hoop
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FigweS. IlI: U. surface plot for plane strin with a 1/4 inch transducer f 10 MHz 0-.8 g~s

Figure S. I b: U, murfae plot for plane strain with a 1/4 inch transducer, f 10 MHZ t 0.8 PS



Figure S.12a: U1 marf=c plot for axisymmetnic with a11/4 inch tansdlucer, f' 10 MHZ t -0.8 ps

Figure s. 12b: U, mwhfac plot for axisymmetric with a 1/4 inch transduwa, fm 10 MHz S-0.89 Ps
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formalism presented in [4] by S. Dai. A y,r

raised cosine signal at 10 Mz is used as

an input and the points were taken at radii

of R -1.0, 2.0 and 4.0 mm each at

angles of* - 0, 30, 60 and 87 degrees, Xz

see Figure (5.14). The results are shown Figure 5.14: Location of points for analytic

in Figures (5.15-21). At 4 =0, y,r comparisons.

direction displacements are not plotted because they are set to zero by the applied

boundary condition along the axis of symmetry. Reflections from the finite sized

numerical model are not shown because the analytic solution assumes an infinite medium.

All three R locations are plotted on the same graph. The R = 2.5 and 4.0 mm signals

have been offset on the abscissa by 1.0 and 2.0, respectively, to separate the signals

completely.

The line source results for the plane strain code compare very well with the analytic

solutions for angles of less than 30 degrees. As * increases, the solutions no longer

agree. This is due to the singularity of the analytic integration at the x - 0 surface which

distorts the head wave. Table (5.1) lists the correct arrival time for the longitudinal,

shear and head waves. The head wave is tangent to the shear wave at * - 33.4 degrees,

therefore head wave timings are only listed for 60 and 80 degrees. The longitudinal and

shear waves arrive at the same time for all values of * for a given R. The numerical

solution gives the correct arrival times. The solutions also appear to agree better once

the longitudinal and shear waves have separated at R - 2.0 and 4.0 mm. The difference

at R - 1.0 mm might be explained by a slight difference in timing which causes the

waves to add differently making the displacements appear to be dissimilar.

The point source numerical solution results are plotted in Figures (5.22-28). Although

the analytic data was not available, the results compare well with those presented in [24].

The analytic solution for a dirac delta function point load is a dirac delta displacement

wave, therefore a longitudinal wave created by convolving a dirac delta function into a
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Table 5.1: Longitudinal, shear and head wave arrival times in ps.

Head Wave
radius Long. Shear 60" 87"

1.0 .1597 .2900 .2594 .1722

2.5 .3993 .7251 .6484 .4304

4.0 .6389 1.1601 1.0374 .6887

raised cosine produces a raised cosine displacement. The longitudinal wave for the

numerical solution is a raised cosine as expected. The wave timings also agree well with

those listed in Table (5.1).

5.5 Experimental Results Comparison

A total debond is modeled

experimentally using a single k__ *a .yr

aluminum plate supported at the -r Akwm

perimeter. The transducer is placed

in the center of the plate to avoid Xz

contaminating the A-scan results with

reflections from the plate edges. One

quarter inch diameter transducers with Figure 5.29: Single aluminum plate

center frequencies of 5 and 10 NHz experimental configuration. (not to scale)

are used. Figure (5.29) shows the physical dimensions of the experimental configuration.

The material properties of the aluminum are C, - 6261.0 mis, Ca - 3448.2 m/s and

p - 2842.0 kg/rmn. The numerical A-scans are calculated by a weighted average of the

displacements at the nodes under the transducer for each time step. The weighting is the

same as the distribution of the uniform load to the nodes.

The experimental and numerical results are compared in Figure (5.30). The experimental

data is shifted so that the first longitudinal reflection overlays with the numerical
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Figure 5.30b: Numerical and experimental A-scans for debond, f = 10 MHz
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prediction. The axisymmetric code without material damping is used for the numerical

solution. The experimental and numerical results are in excellent agreement even without

any damping effects. The large waveforms are the first and second longitudinal wave

reflections from the bottom surface. The shallow waveforms between the longitudinal

reflections are mode converted shear waves created when the longitudinal wave reflects

from the bottom surface. Inspection of the experimental results suggests that the input

wave is close to the raised cosine but not exactly the same.

A schematic of the layered material - M- I hm etwm

experimental configuration using two ....

aluminum plates separated by a thin ANh A (W

layer of acoustic gel is shown in a A

Figure (5.31). The material
&Z

properties of the gel are

C, - 1490 m/s and p- 1080.0 kglmr.

The shear wave velocity for the gel is Figure 5.31: Three layered medium

very low and is estimated for the experimental configuration. (not to scale)

numerical solution as 10 percent of C,. The bond thickness is controlled by a small

diameter wire placed around the perimeter of the plates. Physical dimensions are also

shown in Figure (5.31).

Figure (5.32) compares the experimental results to numerical solutions. The first wave

is the longitudinal wave reflection from the bottom of the top plate. The following

smaller wave is the longitudinal wave reflected from the top surface of the lower

aluminum plate. The next two waves are longitudinal waves that have reflected back and

forth within the bond layer multiple times. The phase difference in the bond layer

reflections could be caused by the lack of damping in the numerical model.
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5.6 Attenuation Example

The damping effect on wave propagation is illustrated by plotting the displacements at

successive time intervals with the same scale. The z direction displacements are plotted

for a undamped and a damped case at t - 1.0, 2.0, 3.0, and 4.0 ps in Figures (5.33-36).

The damping is assumed to be isotropic with values of D,,,, - 111.45 NS/m2 and

D121 -25.07 NSm 2 [11] so that the damping matrix is proportional to the stiffness

matrix. This situation is equivalent to Rayleigh damping with a - 0 [16].

The attenuation of the longitudinal wavefront is evident after only one reflection. At

t = 4.0 ps the longitudinal wave has been reflected by the top surface for the first time.

Introducing viscous damping through equation (2.2) results in damping that is

proportional to the square of the frequency, which results in a dispersive solution.

Therefore, in addition to decreasing the amplitude of the waves, the damping term

produces a change in the waveform. The actual damping in a polycrystafline solid such

as aluminum has a more complex attenuation that becomes proportional to the frequency

to the fourth power for very high frequencies [31].

5.7 Anisotropy Example

The anisotropic capability of the code is tested using the transversely isotropic [C]

matrix for Cobalt. The components of [C] are

C1111 - 35.81x 10' N/m2

CIM , 10.27z I010 Nim2

Cm3 - 16.50Z 1010 N/mr2  (5.3)
C, - 30.70x 1010 N/M2

C1 7.5l0x 1010 N/m2

p - 8900.0 kg/m3

Figure (5.37) shows the z and r direction displacements respectively at t - 1.8 ps for
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Figre 5.33a: Undamped axisymmetricU. murface plot, fuS MHz t=1.O ps

Figure 5.33b: Damped axisymme~ric U. marfae plot, f 5 MHZ t -1.0 pS
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Fipre 5.34a: Undamped axisyzmctric U. surface plot, f 5 MHz t =2.0 pAS

Fig= 5S.34b: Damped axisymmeric U. urfwc plot, f-S MHz t-2.0 ps



Figue 535a:UndmpcdaxiymmericU sufac plo, . M~z t 30ub

Figure 5.35: Udamped axisymmctric U. surface plot, f 5 MHz - 3.0 jis
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Figur 5.36a: Undamped axsymmetuic U. Marface plot, f 5 MHz t 4.0 As

Figure 5.36b: Damped uxisyUnetbic U, maufae plot, f-5 MHz It - 4.0 ps
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Fzgure 5.37a: U. mulfae plot for transversely isotropic Cobalt, fu'5 MHz t - 1.8 p~s

Figure 5.37b: U, suface plot for transversely isotropic Cobalt, f =5 MHz t 1.8 p~s
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a point source with a 5 M signal. C. in the Courant constraint is C = . The

results are the same as those published [11]. The anisotropic analysis introduces more

error into the solution because the wave velocity is now direction dependent. As a
result, the Courant constraint vaies with direction introducing even more complicated

dispersive mesh properties.
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ULTRASONIC SIGNAL PROCESSING OF ADHESIVE

BONDING DATA EMPLOYING CHIRP-Z TRANSFORM

AND ADAPTIVE FILTERING TECHNIQUES

V. K. Nair, R. Ludwig, J. M. Sullivan and D. Dai
Department of Electrical Enginnering, Worcester Polytechnic Institute
Worcester, Massachussetts 01609, MA

INTRODUCTION

Adhesive bonding has found extensive application in the aircraft and defense
industries where the failure of a bond in any of the critical load-bearing
components, for example the rotor-blade of an helicopter, can bring about a
catastrophic failure. Nondestructive evaluation of adhesively bonded structures
attempt to assess the key factors of bond strength and quality. The bond strength
[1] is primarily determined by the thickness of the bondline, as this greatly affects
the stored energy in the bond. Three factors, if determined, provide a good measure
of bond quality. They are bond thickness, contact angle of adhesive to substrate,
and substrate surface-free energy.

The objective this paper sets out to achieve is a me,ns of accurately
determining the thickness of a bond layer. Digital signal processing is used to
analyze the reflected/transmitted data. Both the time domain and frequency
domain approaches are investigated. In the frequency domain the Chirp-Z
transform [2],[51 is employed to perform the spectral analysis of the received signal.
Based on the resonance effect of the bondline the dips in the observed transducer
frequency spectra can be correlated to the thickness of the bond. This topic is
further discussed in references [6] and [7].

As an alternative, time domain analysis of the reflected signal consists of
modeling the bonded structure as an adaptive filter [3], with the taps being
representative of the adhesive layer. This technique is used to provide a deconvolved
bondline response. Adaptive filters have found wide use in adaptive modeling and
system identification in which the unknown system is described by its input-output
behavior. The adaptive filter then tries to emulate the system response due to a
known input. In its application to deconvolution, the effect of undesired medium
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C

Figure 1: Generic configuration used for the experiments
a. Transducer in pulse echo mode
b. Substrate layers
c. Copper wire spacers
d. Adhesive layer (Gel)

influence on the signal is sought to be negated. Here the medium which affects the
bond-line response can be considered as the cumulative effect of the substrates, the
transducer itself and the associated hardware that make up the entire experimental
arrangement.

EXPERIMENTAL ARRANGEMENT

The experimental arrangement for this research required the assembly of
bonded structures of predetermined thicknesses, as shown in Figure 1. The
substrate layers b, are optical glass flats of precisely measured thickness. They are
approximately isotropic in nature with known material constants. Knowledge of
material parameters, like the density and the longitudinal velocity of sound in each
of the three layers is essential in determining the thickness of the adhesive layer.
The adhesive layer d, is simulated by a viscous gel of known material properties. To
corroborate the predictions obtained, copper wires c, of known diameters were
placed as spacers in between the substrates. The contact transducer (0.25 inch
aperture) placement a, is generally in the Pulse Echo (P.E) mode , with a chosen
range of center frequencies between 5-20 MHz.

&
- Floppy drive

o" IIII ulse /Receiver

Personal Computer
Transducer

Test Specimen

Figure 2: Experimental Arrangement

74



nI nn-I n-.

Figure 3: A transversal filter with M tap delays 4K.)

ADAPTIVE FILTERING APPROACH

Adaptive filters are based mainly on three different approaches: the Wiener
Filter Theory, the Kalman Filter Theory, and the classical method of least squares.
Since the Wiener and Kalman filters involve a stochastic formulation the
deterministic least squares approach is chosen. This method requires minimizing an
index of performance related to the error. The error is defined as the difference
between the desired response and the actual filter output. Three different classes of
algorithms form the basis of the method of least squares. They are recursive least
squares, least-squares lattice algoritim, and the QR decomposition least squares
algorithm. In this paper the recursve least-.quares algorithm forms the basis of the
deconvolution technique.

RECURSIVE LEAST SQUARES ALGORITHM

The structural basis of the recursive least squares (RLS) algorithm is a
transversal filter illustrated in igure 3, where u(n) represents the input to the
filter, d(n) represents the desir-d response, d(n) is the output of the filter, and e(n)
is referred to as the estimation error. The RLS algorithm starts by defining a
correlation matrix f(n) such that

a

f(n) = ZA'-iu(i)uJ(i) where 0 < A < 1 (1)
i=I

here An- i is an exponentias weighting factor, or memory factor. The deterministic
normal equation is defined as

= 9'n) (2)

with *(n) being the optimum value of the tap-weight vector for which the index of
perform~ance attains its minimum value. In equation (2) 0(n) is the deterministic
crorgi-correlation vector defined as

ft

E(n) = yA"-i u(i)d(i) (3)
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The index of performance E, sought to be minimized in this case is

E(n) = A-'Ie(i) 2  (4)
s=1

with

e(i) = d(i) - wT (n)u(i) (5)

Rephrasing equation (2) we can get an expression for the optimal tap-weight
vector as

= 1'(n)G(n) (6)

The above equation involves the inversion of an M-by-M matrix which is
accomplished by employing the Woodbury [3] matrix inversion lemma.

APPLICATION TO BONDED STRUCTURES

Figure 4a illustrates the P.E test of a triple layered medium. The reflected signal
d(t) is interpreted to be the convolution of the signal u(t) taken from a single layer
of substrate material as shown in Figure 4b, and the adhesive layer, represented as a
transfer function h(t) of Figure 4c. The signal u(t) can be considered to have all the
external influences sought to be negated from the bondline response. Referring to
Figure 3, it can be seen that here the input to the adaptive filter would be u(t) and
the desired response to which u(t) is adapted, is d(t). On convergence the filter taps
are then representative of the bondline transfer function h(t).

04I)

a.

c .

Figure 4: a.Signal from bonded structure d(t) = u(t) * h(t)
b.Signal from single layer of substrate material u(t)
c.Bondline transfer function h(t)
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RESULTS

The case study presented here deconvolves the bondIine transfer function of a
simulated bond of a measured thickness of 117.6 p&m. The adaptive filter set up has
256 taps. The input signal u(t) consists of 512 samples, and the desired response
d(t) also has 512 samples, u(t) is delayed by 256 samples to improve performance of
the filter [4].

A-A

- A

-A -A

e(n) d(n)

S.I I- j

Figure 5: Process of Adaptation

77



Figure 5 describes the details of the process of adaptation. In this figure e(n)
shows the error signals at each iteration which describe the convergence of the filter.
When the a priori error and the a posteriori error have the same value, the filter
has converged to its optimum tap weight vector. The signal i(n) describes the
predicted output which closely matches d(n). The filter taps on convergence
represent the adhesive layer transfer function depicted in Figure 6a. This transfer
function is then convolved with an idealized transducer signal having a Gaussian
frequency response centered at 10 MHz, shown in Figure 6b.

The result of the convolution is shown in Figure 7a in the time domain. Figure
7b illustrates the frequency domain response of this signal. When the frequency
spectrum of the experimentally obtained signal d(n) is overlaid, it can be seen that
location of the nulls in either case are in close alignment.

1.6 --- _

02

I

II

*Oil

= 0

0.

-1
-1

-1.8 .

-2 - 2-

s0 100 150 200 250 0 .05 .1 .15 .2 .25
Tap Number Time (micro sees)

Figure 6: a. Filter taps representing h(n)
b. Idealized 10 MHz transducer signal RCos(n)
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Figure 7: &.Time domain response of RCos(n) * h(n)
b.Frequency domain response of RWos(n) * h(n)

Finally in order to vaidafte the deconvolution model presented here, u(n) and
h(n) are convolved and the results compared with d(n). Figure 8a is the time
domain response of this convolution which compares favorably with d(n) shown in
Figure 5. The comparison in the frequency domain of the signals u(n) * h(n) and
d(n) is shown in Figure 8b. As can be seen there is an almost one to one
correspondence.

• -- CZT(h(,,Un)-.,
-- CZ-r(d[=')

9 .4 -

-.2 5
.22

00

-,4 .2_

2 3 4 . s 0 5 t0 1 20
Time (micro secs) Frequency (MHz)

Figure 8 a.Time domain response of uC(n) h(n)
b.Frequency domain response of u(n) * h(n)
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CONCLUSION

This paper discusses the precise thickness measurement of thin adhesive layers
by employing a method of deconvolving bondline response, For the thickness
measurement a physical model was developed, to which a frequency domain analysis
can be applied. Successful measurement of thin layers based on this frequency
domain model has been demonstrated [61,[71. To deconvolve the adhesive layer
response a transfer function model is developed based on adaptive filters. The
deconvolved bondline transfer function is obtained, and compared to experimentally
recorded 6ign'ls. These comparisons show excellent agreement.

The application of this technique to realistic bonding configurations is one of
the future goals. Identification of broad band signals to replace the simulated
transducer signal, would provide a better frequency evaluation of the bondline
transfer function. Future work may also entail applying the transfer function model
to pattern recognition schemes.
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APPENDIX A

The elastic constitutive matrices for isotropic materials in terms of Lam6's constants

are shown in the index contracted fcrms of the stress strain relations for plane strain

in equation (A. 1) and for axisymmetry in equatioi (A.2).

o= +2p A, 0 =
jy} = A +2p 0]ey (A.1)

'A+2p A A 0 t~

A A+2p 2 0 r. (A.2)

tooA A A +2y 0 to

0 0 0 2u Len
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